2,185 research outputs found

    Student and expert perceptions of the role of mathematics within physics

    Get PDF
    Students’ perceptions of the role of mathematics within physics were examined. I propose that the identification of physics as a science based ultimately on experiment is a threshold concept: transformation from a naïve view that physics is based upon mathematics to an expert view that physics is based on experiment is difficult for students. Seven students taking first-year university physics were interviewed in two focus groups; nine practising physicists from academia and industry (considered as experts) were interviewed as six individuals plus one focus group of three participants. Of particular interest was the ‘expert’ view emphasizing the conceptual nature of physics. This was a threshold in understanding that had not been crossed by students. Rather, students viewed mathematics and physics as being more strongly connected than did practising physicists; specifically that “maths explains physics”. Experts consider this view as holding back a student’s understanding of the subject and preventing them from becoming effective physicists. It is troublesome to students because they are less able to identify the relevant concepts before trying to tackle a problem with mathematics, making their approach less likely to be effective, however, both groups (physicists and students) identified physics as belonging to ‘the real world’ and that mathematics shows how physical entities can be combined or related, indicating student responses are not completely naïve. Opinions on how best to teach mathematical concepts in physics varied considerably across participants

    Subthreshold dynamics of a single neuron from a Hamiltonian perspective

    Get PDF
    We use Hamilton's equations of classical mechanics to investigate the behavior of a cortical neuron on the approach to an action potential. We use a two-component dynamic model of a single neuron, due to Wilson, with added noise inputs. We derive a Lagrangian for the system, from which we construct Hamilton's equations. The conjugate momenta are found to be linear combinations of the noise input to the system. We use this approach to consider theoretically and computationally the most likely manner in which such a modeled neuron approaches a firing event. We find that the firing of a neuron is a result of a drop in inhibition, due to a temporary increase in negative bias of the mean noise input to the inhibitory control equation. Moreover, we demonstrate through theory and simulation that, on average, the bias in the noise increases in an exponential manner on the approach to an action potential. In the Hamiltonian description, an action potential can therefore be considered a result of the exponential growth of the conjugate momenta variables pulling the system away from its equilibrium state, into a nonlinear regime

    Comparison of modelling approaches to transcranial magnetic stimulation.

    Get PDF
    This paper describes a comparison of modelling approaches to transcranial magnetic stimulation

    Numerical modelling of plasticity induced by transcranial magnetic stimulation

    Get PDF
    We use neural field theory and spike-timing dependent plasticity to make a simple but biophysically reasonable model of long-term plasticity changes in the cortex due to transcranial magnetic stimulation (TMS). We show how common TMS protocols can be captured and studied within existing neural field theory. Specifically, we look at repetitive TMS protocols such as theta burst stimulation and paired-pulse protocols. Continuous repetitive protocols result mostly in depression, but intermittent repetitive protocols in potentiation. A paired pulse protocol results in depression at short (∼ 100 ms) interstimulus intervals, but potentiation for mid-range intervals. The model is sensitive to the choice of neural populations that are driven by the TMS pulses, and to the parameters that describe plasticity, which may aid interpretation of the high variability in existing experimental results. Driving excitatory populations results in greater plasticity changes than driving inhibitory populations. Modelling also shows the merit in optimizing a TMS protocol based on an individual’s electroencephalogram. Moreover, the model can be used to make predictions about protocols that may lead to improvements in repetitive TMS outcomes

    Phase transitions in single neurons and neural populations: Critical slowing, anesthesia, and sleep cycles

    Get PDF
    The firing of an action potential by a biological neuron represents a dramatic transition from small-scale linear stochastics (subthreshold voltage fluctuations) to gross-scale nonlinear dynamics (birth of a 1-ms voltage spike). In populations of neurons we see similar, but slower, switch-like there-and-back transitions between low-firing background states and high-firing activated states. These state transitions are controlled by varying levels of input current (single neuron), varying amounts of GABAergic drug (anesthesia), or varying concentrations of neuromodulators and neurotransmitters (natural sleep), and all occur within a milieu of unrelenting biological noise. By tracking the altering responsiveness of the excitable membrane to noisy stimulus, we can infer how close the neuronal system (single unit or entire population) is to switching threshold. We can quantify this “nearness to switching” in terms of the altering eigenvalue structure: the dominant eigenvalue approaches zero, leading to a growth in correlated, low-frequency power, with exaggerated responsiveness to small perturbations, the responses becoming larger and slower as the neural population approaches its critical point–-this is critical slowing. In this chapter we discuss phase-transition predictions for both single-neuron and neural-population models, comparing theory with laboratory and clinical measurement

    Characteristics of temporal fluctuations in the hyperpolarized state of the cortical slow oscillation

    Get PDF
    We present evidence for the hypothesis that transitions between the low- and high-firing states of the cortical slow oscillation correspond to neuronal phase transitions. By analyzing intracellular recordings of the membrane potential during the cortical slow oscillation in rats, we quantify the temporal fluctuations in power and the frequency centroid of the power spectrum in the period of time before “down” to “up” transitions. By taking appropriate averages over such events, we present these statistics as a function of time before transition. The results demonstrate an increase in fluctuation power and time scale broadly consistent with the slowing of systems close to phase transitions. The analysis is complicated and limited by the difficulty in identifying when transitions begin, and removing dc trends in membrane potential

    Cortical patterns and gamma genesis are modulated by reversal potentials and gap-junction diffusion

    Get PDF
    In this chapter we describe a continuum model for the cortex that includes both axon-to-dendrite chemical synapses and direct neuron-to-neuron gap-junction diffusive synapses. The effectiveness of chemical synapses is determined by the voltage of the receiving dendrite V relative to its Nernst reversal potential Vrev. Here we explore two alternative strategies for incorporating dendritic reversal potentials, and uncover surprising differences in their stability properties and model dynamics. In the “slow-soma” variant, the (Vrev - V) weighting is applied after the input flux has been integrated at the dendrite, while for “fast-soma”, the weighting is applied directly to the input flux, prior to dendritic integration. For the slow-soma case, we find that–-provided the inhibitory diffusion (via gap-junctions) is sufficiently strong–-the cortex generates stationary Turing patterns of cortical activity. In contrast, the fast-soma destabilizes in favor of standing-wave spatial structures that oscillate at low-gamma frequency ( 30-Hz); these spatial patterns broaden and weaken as diffusive coupling increases, and disappear altogether at moderate levels of diffusion. We speculate that the slow- and fast-soma models might correspond respectively to the idling and active modes of the cortex, with slow-soma patterns providing the default background state, and emergence of gamma oscillations in the fast-soma case signaling the transition into the cognitive state

    Instabilities of the cortex during natural sleep

    Get PDF
    The electrical signals generated by the human cortex during sleep have been widely studied over the last 50 years. The electroencephalogram (EEG) observed during natural sleep exhibits structures with frequencies from 0.5 Hz to over 50 Hz and complicated waveforms such as spindles and K-complexes. Understanding has been enhanced by comprehensive intra-cellular measurements from the cortex and thalamus such as those performed by Steriade et al [1] and Sanchez-Vives and McCormick [2]. Models of the cerebal cortex have been developed in order to explain many of the features observed. These can be classified in terms of individual neuron models or collective models. Since we wish to compare predictions with gross features of the human EEG, we choose a collective model, where we average over a population of neurons in macrocolumns. A number of models of this form have been developed recently; that developed at Waikato draws from a number of different sources to describe the temporal and spatial dynamics of the system

    'Stealth' Technology: Proposed new method of interpretation of infrared ship signature requirements

    Get PDF
    A new method of deriving and defining requirements for the infrared signature of new ships is presented. The current approach is to specify the maximum allowed temperature or radiance contrast of the sheep with respect to its background

    Misconceptions arising from the Infinite Solenoid Magnetic Field Formula

    Get PDF
    Many high school and first-year university courses include discussion of the magnetic effect of currents. Frequently discussed textbook examples include long, straight wires, circular current loops, and solenoids, partly because these examples are tractable mathematically. The solenoid naturally leads to discussion on magnetic materials since it is readily demonstrated that a paramagnetic core significantly boosts the strength of an electromagnet. However, magnetic effects of solid and even liquid materials are subtle and confusing¹ and the mathematics is not straightforward. This leads to confusion amongst students (and their teachers), which, when taken to more advanced study, leads to significant misconceptions about the nature of magnetic properties and fields. These misconceptions can become problematic when practical (rather than stereotyped) magnetic design and analysis is required such as for transformers,² magnetic recording materials, geomagnetic sensors,³ or biological stimulators4 to name a few. In this article, I highlight examples of this confusion, in particular the failure in realistic situations of the well-quoted formula for an infinite solenoid with a paramagnetic core, and the physical interpretation of the relative permeability of a material, µr
    corecore